

Advanced Analog Integrated Circuits Design

Dr. Hamed Aminzadeh

امروزه کتابخوانی و علم آموزی، نه تنها یک وظیفه ملی، که یک واجب دینی است. ا

در عصر حاضر یکی از شاخصه های ارزیابی رشد، توسعه و پیشرفت فرهنگی هر کشوری میزان تولید کتاب، مطالعه و کتابخوانی مردم آن مرز و بوم است. ایران اسلامی نیز از دیرباز تاکنون با داشتن تمدنی چندهزارساله و مراکز متعدد علمی، فرهنگی، کتابخانه های معتبر، علما و دانشمندان بزرگ با آثار ارزشمند تاریخی، سرآمد دولتها و ملتهای دیگر بوده و در عرصه فرهنگ و تمدن جهانی به سان خورشیدی تابناک همچنان می درخشد و با فرزندان نیک نهاد خویش هنرنمایی می کند. چه کسی است که در دنیا با دانشمندان فرزانه و نام آور ایرانی همچون ابوعلی سینا، ابوریحان بیرونی، فارابی، خوارزمی و ... همچنین شاعران برجسته ای نظیر فردوسی، سعدی، مولوی، حافظ و ... آشنا نباشد و در مقابل عظمت آنها سر تعظیم فرود نیاورد. تمامی این افتخارات ارزشمند، برگرفته از میزان عشق و علاقه فراوان ملت ما به فراگیری علم و دانش از طریق خواندن و مطالعه منابع و کتابهای گوناگون است. به شکرانه الهی، تاریخ و گذشته ما، همیشه درخشان و پربار است. ولی اکنون در این زمینه در چه جایگاهی قرار داریم؟ آمار و ارقام ارائه شده از سوی مجامع و سازمانهای فرهنگی در جایگاهی قرار داریم؟ آمار و ارقام ارائه شده از سوی مجامع و سازمانهای فرهنگی در مورد سرانه مطالعه هر ایرانی، برایمان چندان امیدوارکننده نمی باشد.

کتاب، دروازهای به سوی گستره دانش و معرفت است و کتاب خوب، یکی از بهترین ابزارهای کمال بشری است. همه دستاوردهای بشر در سراسر عمر جهان، تا آنجا که قابل کتابت بوده است، در میان دستنوشتههایی است که انسانها پدید آورده و میآورند. در این مجموعه بی نظیر، تعالیم الهی، درسهای پیامبران به بشر، و همچنین علوم مختلفی است که سعادت بشر بدون آگاهی از آنها امکانپذیر نیست. کسی که با دنیای زیبا و زندگی بخش کتاب ارتباط ندارد بیشک از مهم ترین دستاورد انسانی و نیز از بیشترین معارف الهی و بشری محروم است. با این دیدگاه، بهروشنی می توان ارزش و مفهوم رمزی عمیق در این حقیقت تاریخی را دریافت که اولین خطاب خداوند متعال به پیامبر گرامی اسلام(ص) این است که «بخوان!» و در اولین خطاب خداوند متعال به پیامبر گرامی اسلام(ص) این است که «بخوان!» و در اولین

۱. پیام مقام معظم رهبری به مناسبت آغاز هفته کتاب ۷۲/۱۰/۴

سورهای که بر آن فرستاده عظیمالشأن خداوند، فرود آمده، نام «قلم» به تجلیل یاد شده است: «إقْرَأُ وَ رَبُّکَ الْاکْرَمُ. اَلَّذی عَلَّمَ بِالْقَلَم» در اهمیت عنصر کتاب برای تکامل جامعه انسانی، همین بس که تمامی ادیان آسمانی و رجال بزرگ تاریخ بشری، از طریق کتاب جاودانه مانده اند.

دانشگاه پیام نور با گستره جغرافیایی ایرانشمول خود با هدف آموزش برای همه، همه همه جا و همه وقت، به عنوان دانشگاهی کتاب محور در نظام آموزش عالی کشورمان، افتخار دارد جایگاه اندیشه سازی و خردورزی بخش عظیمی از جوانان جویای علم این مرز و بوم باشد. تلاش فراوانی در ایام طولانی فعالیت این دانشگاه انجام پذیرفته تا با بهره گیری از تجربه های گرانقدر استادان و صاحب نظران برجسته کشورمان، کتاب ها و منابع آموزشی در سی شاخص و خود آموز تولید شود. در آینده هم، این مهم با هدف ارتقای سطح علمی، روز آمدی و توجه بیشتر به نیازهای مخاطبان دانشگاه پیام نور با جدیت ادامه خواهد داشت. به طور قطع استفاده از نظرات استادان، صاحب نظران و دانشجویان محترم، ما را در انجام این وظیفه مهم و خطیر یاری رسان خواهد بود. پیشاپیش از تمامی عزیزانی که با نقد، تصحیح و پیشنهادهای خود ما را در انجام این وظیفه خطیر یاری می رسانند، سپاسگزاری می نماییم. لازم است از تمامی اندیشمندانی که تاکنون دانشگاه پیام نور را منزلگه اندیشه سازی خود دانسته و ما را در تولید کتاب و محتوای آموزشی در سی یاری نموده اند، صمیمانه قدردانی گردد. موفقیت تولید کتاب و محتوای آموزشی در سی یاری نموده اند، صمیمانه قدردانی گردد. موفقیت

دانشگاه پیامنور

Contents

Preface	IX
Chapter 1: EKV Model for MOS devices	1
1.1. Introduction	1
1.2. Different Operating Regimes for MOS Devices	2
1.2.1. The traditional (Square-law) MOS Transistor Model for Different Regio	ns4
1.2.2. Transit Frequency	7
1.2.3. Figures of Merit at Different MOS Operating Regimes	9
1.3. Drawbacks of the Conventional Models and the Solutions	9
1.3.1. First Solution: Use of Empirical BSIM Models	11
1.3.2. Second Solution: Analytical EKV Model	12
1.4. Fundamentals of EKV Model	12
1.4.1. EKV Model Parameters	18
1.4.2 Sizing the MOS Devices According to the EKV Model	18
References	20
Chapter 2: Circuit Design and Analysis Using $g_{\rm m}/I_{\rm D}$ Method	21
2.1. Introduction	21
2.2. Modeling Problem in Analog Circuits Design	22
2.3. <i>gmI</i> D Methodology	26
2.3.1. Introducing the Design Metrics in <i>gmI</i> D Methodology	28
2.3.2. Characterizing the MOS Devices with DC Sweeps	30
2.3.3. Design in a Nutshell	33
2.3.4. gmID–Centric Technology Characterization	35
2.3.5. Generic <i>gmID</i> Design Flow	35
2.3.6 Analysis of CS Amplifier	40
2.3.7. MATLAB Lookup Function	43
2.3.8. Robust Design Regardless of the Design Corners	50
2.3.9. Comparison and Summary	50
2.4. Case Study #1: Systematic Circuit Design and Analysis Using gmID Function	ions
of MOS devices	52
2.4.1 Introduction	52
2.4.2. Matrix Description of SPICE Model Files	56
2.4.3. Systematic Circuit Design Using Matrix Derivation of the SPICE Models	61
2.4.4. Circuit Design Using Generalized Design Functions	68

2.5. Conclusions	71
References	81
Chapter 3: Integrated Current and Voltage References	83
3.1. Introduction	83
3.2 General Considerations	84
3.3. Supply-Independent Biasing	85
3.4. Temperature-Independent References	89
3.4.1. Negative-TC Voltage	90
3.4.2. Positive-TC Voltage	92
3.4.3. Bandgap Reference (BGR)	92
3.5. Design Issues of Bandgap References	94
3.5.1. Collector Current Variation	95
3.5.2 Compatibility with CMOS Technology	95
3.5.3. Opamp Offset and Output Impedance	96
3.5.4. Feedback Polarity	100
3.5.5. Bandgap Reference	100
3.5.6. Supply Dependence and Start-Up	101
3.6. PTAT Current Generation	102
3.7. Constant– $G_{\rm m}$ Biasing	104
3.8. Speed Considerations	106
3.9. Noise Considerations	108
3.9.1. Noise Analysis	108
3.10. Low-Voltage Bandgap References	111
3.11. Case Study #1: A High-Precision Bandgap Reference with Improved	l Power
Supply Rejection	115
3.12. Case Study #2: A CMOS Voltage Reference	120
3.12.1. Measurement results in 0.35 µm CMOS	122
3.13. Case Study # 3: A Self-Biased Four-Transistor Current and	Voltage
Reference	123
3.13.1 Simulation results in 0.18 µm CMOS process	127
3.14 Case Study # 4: An All-MOS Self-Powered Subthreshold Voltage Re	eference
with Enhanced Line Regulation	130
3.15. Case Study # 5: A 0.7-V Supply, 21-nW All–MOS Voltage Reference	Using a
MOS-Only Current-Driven Reference Core in Digital CMOS	143
References	153
Chapter 4: Integrated Oscillators	155
4.1. Introduction	155
4.2. General Considerations	155
4.2.1. Bode Diagram	157
4.3. Ring Oscillator	159
4.3.1. Ring Oscillator Using Invertors	164
4.3.2. Differential Stage Using pMOS Loads	169
4.4. LC Oscillator	171
4.4.1. Realistic LC Tank	171
4.4.2. Conversion of Series to Parallel Combination	172

4.4.3. Cross-Coupled Oscillator	174
4.4.4. Colpitts Oscillator	177
4.4.5. One–Port Oscillator	180
References	186
Chapter 5: Integrated Voltage Regulators	187
5.1. Introduction	187
5.2. Types of Integrated Power Converters	189
5.2.1. Telemetric-Powered Supplies: Biomedical	190
5.3. Charge-Pump Circuits	193
5.4. Linear Voltage Regulators	197
5.4.1. Principles of Operation	197
5.4.2. Implementation of a Variable RS	198
5.4.3. Implementation of Feedback Control	199
5.5. Low-Dropout Regulators	201
5.5.1. LDO Parameters	204
5.5.2. LDO Design Specifications: DC Parameters	207
5.5.3. LDO Design Specifications: Transient Parameters	209
5.5.4. LDO Design Specifications: AC Parameters	211
5.5.5. LDO Design Specifications: Power and Robustness	212
5.5.6. LDO Stability Solutions: Load Capacitance with Equivalent	Series
Resistance (ESR)	214
5.5.7. LDO's Stability: Cascode Compensation	216
5.5.8. Case Study #1: Low-Cost Area-Efficient Low-Dropout Regulators	Using
MOSFET Capacitors	217
5.5.9. Power Supply Rejection	221
5.5.10. Noise in LDOs	224
5.5.11. LDO Design Metrics	224
5.6. Case Study #2: Low Dropout Voltage Source: An Alternative Approa	ch for
Low-Dropout Regulators	225
5.6.1. Temperature Compensation Design Considerations	227
5.6.2. LDVS Complete Implementation	229
5.7. Switching Regulators	231
5.7.1. Switch-Mode Buck Converters	233
5.7.2. Simplified Block Diagram of a Buck Converter	235
5.7.3. Switch-Mode Boost Converters	237
5.7.4. Switch-Mode Buck-Boost Converters	238
5.8. Case Study #3: Circuit-Level Design of a Power Supply Unit with an	
Low-Noise Output	239
5.8.1. Design of the Switching Regulator	240
5.8.2. System-Level Simulation of Switching Regulator	243
5.8.3. Circuit-Level Simulation of the Switching Regulator	243
5.8.4. Linear Voltage Source of the Design	246
5.8.5. Simulation Results of the Power supply	246
References	2/18

Two analog integrated circuits (a bandgap reference and an operational amplifier) designed and embedded in a monolithic chip: Submitted at June 2020 by Dr. Hamed Aminzadeh and Mohammad Mahdi Valinezhad for fabrication in 0.18µm CMOS technology.

Preface

The field of analog integrated circuit is embraced by CMOS technology over the recent years, offering cost-effective and highly efficient approaches for dominating the microelectronics market. Despite bipolar and GaAs devices still find fruitful applications in electronics products, it is only the CMOS technology which offers viable and reliable solutions for the integration of advanced analog and mixed-signal microsystems. With the device channel dimension continuing to scale down to 0.05 µm and below, integrated MOS devices will continue to facilitate circuit design for the next several years. Analog circuit design technique has progressed with the CMOS process as well. High-power, high-voltage analog circuits with few transistors and capable of processing simple continuous-time analog signals have been substituted by low-power, low-voltage microsystems comprising thousands of MOS devices and various capabilities, including processing of large, discrete-time signals with high efficiency. As a result, many analog design techniques that were proved to be effective only a decade ago have been abandoned since they were not useful for present low-voltage analog circuits.

This book deals with the design and analysis of advanced analog integrated CMOS circuits, emphasizing on fundamentals and novel paradigms that the designer should master in today's electronics industry. Analog design requires both insight and intuition. Therefore, each concept in this book is introduced firstly from a basic perspective

and treated by careful analysis. The objective is to develop by intuition a solid foundation of analog circuit design and analysis so that the designer can learn the trade-offs between speed, area, power consumption, and the final error of each configuration. This approach enables the designer to apply the concepts of simple analog circuits to advanced circuits. The material of this book was taught firstly in the form of the presentation slides, enabling the writer to modify the format, order, and the contents of each chapter thoroughly. At first, we recognized what the reader should learn at each chapter, and then started to convey the most important concepts in simple and clear language. We gradually add the necessary modifications to arrive at the most advanced concepts proposed by the author in the literature. This procedure is particularly useful for learning analog circuits, since it allows the reader to pursue the evolution of a circuit and to learn both circuit analysis and synthesis simultaneously.

The context contains five chapters, whose context is selected carefully to provide the most important materials for self-study and classroom adoption in a semester. For each chapter at the beginning, we cover only a minimum of precise analysis, leaving the advanced concepts of the prior art to the rest of the chapter. First-time readers may not simply comprehend the advanced circuit design techniques before they study the principles of basic reference books. Therefore, an investigation on the primitive concepts is taught before starting to study the advanced models and configurations.

It is assumed that the reader is familiar with the basic techniques of circuit design and analysis. The book is therefore a complementary material for the elementary reference books, with an emphasis on the new achievements proposed by the author. Chapter 1 discusses briefly the fundamentals of the EKV model for the MOS devices. The EKV model finds its roots in the first transistor models, accounting for the weak, moderate and strong inversion regions together. Unlike the standard square-law model that fails to quantify the operating region and the behavior of the nano-scale transistors, the EKV model proves

to be accurate in relating the region of operation to the bias currents and bias voltages. The EKV model parameters are not, however, provided by many fabrication companies, yielding unknown variables in the design expressions. Chapter 2 introduces a systematic yet empirical transistor model relying on the $g_{\rm m}/I_{\rm D}$ methodology. The most important advantage of the $g_{\rm m}/I_{\rm D}$ methodology is that it can be evaluated through experimental or simulation procedures. This minimizes the gap between the accurate results of simulation and those of the analysis, enabling to predict with high accuracy the MOS transistor characteristics based on pre-computed lookup tables. After understanding the most important MOS device models in Chapters 1 and 2, Chapters 3 through 5 deal with more advanced topics: Integrated voltage references and voltage regulators, and integrated oscillators. These important subjects are very essential for an analog designer and can be found in the most analog, digital and mixed-signal microsystems.

This book follows the common notations used for the variables according to IEEE standard. An analog signal is composed of the sum of DC and small-signal quantities. An input voltage $v_{\rm IN}$, for example, is the sum of the DC $V_{\rm IN}$ component and the incremental AC $v_{\rm in}$.

In the end, the author would like to acknowledge the contribution of Mr. Mohammad Jamali for preparing a general draft of the chapters according to the teaching slides.

Dr. Hamed Aminzadeh, Payame-Noor University Summer 2020

List of Abbreviations

Common symbols and abbreviations are organized below by meaning.

A: Ampere, unit of current AC: Alternating current BGR: Bandgap Reference

BJT: Bipolar Junction Transistor

BSIM: Berkeley short-channel, insulated gate, FET model

BW: Bandwidth

CAD: Computer-aided design

CMOS: Complementary metal–oxide semiconductor

CMRR: Common-mode rejection ratio

CP: Charge pump **CS:** Common-source

CSIM: Compact Short-Channel IGFET Model **CTAT:** Complementary-to-absolute-temperature

DC: Direct current

DTC: Dead Time Control

EKV: Enz-Krummenacher-Vittoz MOS model

ESR: Equivalent Series Resistance

F: Farad, unit of capacitance **FET:** Field effect transistor

FO: Fan-out

IC: Integrated circuit JFET: Junction FET

K: Kelvin, (absolute) unit of temperature

KCL: Kirchhoff's Current Law **KVL:** Kirchhoff's Voltage Law

GA: Genetic algorithm

GBW: Gain-bandwidth product

GM: Gain margin

Hz: Hertz, unit of frequency

ICA: Imperialist competitive algorithm

LDO: Low-dropout regulator

LDVS: Low-dropout voltage source

LHP: Left half-plane **MI:** Moderate inversion

MOS: Metal–oxide semiconductor

MOSCAP: MOS capacitor

MOSFET: Metal-oxide semiconductor field-effect transistor

*n*MOS: n-type metal–oxide semiconductor

NSGA: non-dominated sorting GA

OTA: Operational transconductance amplifier

Opamp: Operational Amplifier

PCDM: Parallel-compensated-depletion-mode

PM: Phase margin

pMOS: p-type metal-oxide semiconductor

PSD: Power spectral density

PSRR: Power-supply rejection ratio

PTAT: Proportional-to-absolute-temperature **PVT:** Process, voltage and temperature

PWM: Pulse-width-modulation

RFID: Radio-frequency identification

RHP: Right half-plane RMS: Root mean square SA: Simulated annealing

SCDM: Series-compensated-depletion-mode

SI: Strong inversion

SPICE: Stanford Program for Integrated Circuit Emulation

SR: Switching regulator; Slew rate

TC: Temperature coefficient

TSMC: Taiwan Semiconductor Manufacturing Company

UGF: Unity-gain frequency **V**: Volt, unit of voltage

VCO: Voltage-controlled oscillators **VLSI:** Very Large Scale Integration

W: Watt, unit of power WI: Weak inversion

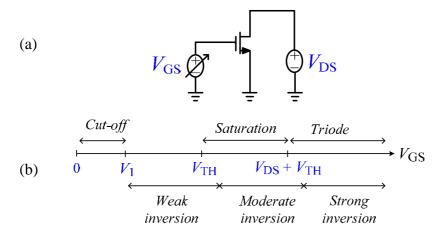
ZTC: Zero-temperature-coefficient

Chapter 1

EKV Model for MOS devices

1.1. Introduction

Modern large-scale integrated circuits are comprised inevitably of several MOS transistors and their interconnections. The first requirement of circuit design and analysis is the access to a reliable model for operation of the MOS transistors.


For analysis of the low-speed digital circuits, a very simple model may be more than sufficient, since every transistor serving in the logic circuits is operating similar to an on-off switch. As soon as fast transitions appear in the time domain of the switches activity, the model should be revised to describe the dynamic behavior of a logic circuit and to obtain the rise and fall time of the pulses. The same dynamic behavior happens when the frequency of a digital circuit approaches to the very high frequencies. More details must be added with the reduction of the power supply, including the residual current of the 'off' devices which plays an important role in the overall power consumption of the modern analog and digital circuits. Advanced electronics market is relied largely on the integrated complementary MOS (CMOS) circuits with the analog and digital sections operating together. Design of high-performance CMOS circuits requires an accurate model of the MOSFETs.

This chapter explains the basic motivations for developing the MOS transistor models that can be utilized for the design of CMOS circuits. It gives a short overview of the EKV transistor model,

motivated by the design and analysis of CMOS amplifiers based on the explained model. The EKV model is the result of a large body of work performed by C. C. Enz, F. Krummenacher, and E. A. Vittoz. The model not only describes the physics of the MOS transistors, but also provides the required tools for a circuit designer. The result is a precise and reliable model, which can predict correctly the voltages and currents of a four-terminal symmetric MOSFET, has smooth behavior with no discontinuity in the operating regions, and can measure the small-signal parameters.

1.2. Different Operating Regimes for MOS Devices

It is critical to understand the different regions of operation of a MOSFET as a prerequisite to design and analyze CMOS circuit. In this section, we apply the most important concepts of the MOS devices to quantify the operation of an nMOS implemented in a p-substrate [1]. The concepts of this section can be applied to describe the operation of the pMOS devices in a similar manner. Fig. 1.1 illustrates the possible operating regimes for a typical n-channel metal oxide semiconductor (nMOS). From the perspective of the gate–source voltage (V_{GS}), the operation of a MOSFET can be characterized

Fig. 1.1. The different operating regimes for an *n*MOS transistor.

by three operating regions [2, 3]:

- 1. Weak inversion (WI) for $V_{GS} V_{TH} < 50$ mV,
- 2. Moderate inversion (MI) for 50 mV $< V_{GS} V_{TH} < 150$ mV,
- 3. Strong Inversion (SI) for $V_{\rm GS} V_{\rm TH} > 150$ mV, where $V_{\rm TH}$ is the threshold voltage.

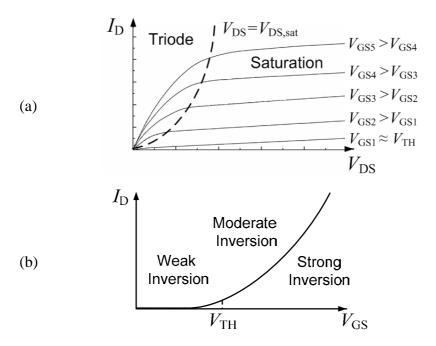
From the perspective of the drain–source voltage, the possible operating regions are:

- 1. Triode: $V_{\rm DS} < V_{\rm DS,sat}$,
- 2. Saturation: $V_{DS} > V_{DS,sat}$,

where $V_{\rm DS,sat}$ is the saturation voltage and is equal to the overdrive voltage ($V_{\rm OV}$) of the square-law model [3]. The overdrive voltage is:

$$V_{\rm OV} = V_{\rm GS} - V_{\rm TH}.$$
 (1.1)

Calculation of DC biasing point is a first step towards circuit design and analysis. Common challenges are determining the drain current and the proper network that can fix the device operating point before performing small-signal analysis. In the case of a long-channel nMOS, the square-law model for the three widely-used regions of operation are [2-4]:


$$I_{\rm D} = \begin{cases} \left(\frac{W}{L}\right) I_0 \exp\left(\frac{V_{\rm GS} - V_{\rm TH}}{N V_{\rm T}}\right) \left[1 - \exp\left(-\frac{V_{\rm DS}}{V_{\rm T}}\right)\right] & \text{WI} \\ \frac{1}{2} \mu_{\rm n} C_{\rm OX} \left(\frac{W}{L}\right) (V_{\rm GS} - V_{\rm TH})^2 (1 + \lambda V_{\rm DS}) & \text{SI Saturation} \end{cases} \tag{1.2}$$

$$\mu_{\rm n} C_{\rm OX} \left(\frac{W}{L}\right) \left[(V_{\rm GS} - V_{\rm TH}) V_{\rm DS} - \frac{1}{2} V_{\rm DS}^2\right] & \text{SI Triode} \end{cases}$$

where, W and L are the gate width and length, respectively, I_0 is the technology-dependent "technology current", μ is the carrier mobility, λ is the channel length modulation coefficient, and N is the subthreshold slope factor. The thermal voltage (V_T) is defined as

$$V_{\rm T} = \frac{kT}{a} \approx 26 \,\text{mV},\tag{1.3}$$

4 Advanced Analog Integrated Circuits Design

where, q is the charge of electron, k is the Boltzmann constant, and T is the absolute temperature. Fig. 1.2 determines the regions of operation of a MOSFET, revealing that the common square-law model fails to describe the MOS operating regimes and, most importantly, its operation at moderate inversion.

Fig. 1.2. Possible operating regions of a MOSFET from the perspectives of gate-source and drain-source voltages.

1.2.1. The traditional (Square-law) MOS Transistor Model for Different Regions

For our analysis of a MOS device operating at strong inversion, we initially assume that the transistor switches off abruptly as $V_{\rm GS}$ drops below $V_{\rm TH}$ [3]. In reality, for $V_{\rm GS}{\sim}V_{\rm TH}$, a "weak" inversion layer appears below the gate terminal and causes conduction from the drain terminal to the source (Fig. 1.3). Even for $V_{\rm GS} < V_{\rm TH}$, $I_{\rm D}$ is still finite, exhibiting an exponential dependence on $V_{\rm GS}$ that is known as "subthreshold conduction". Such dependence can be formulated as:

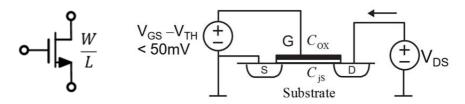


Fig. 1.3. Sub-threshold conduction of a MOSFET.

$$I_{\rm D} = \left(\frac{W}{L}\right) I_0 \exp\left(\frac{V_{\rm GS} - V_{\rm TH}}{N V_{\rm T}}\right) \left[1 - \exp\left(-\frac{V_{\rm DS}}{V_{\rm T}}\right)\right], \tag{1.4}$$

where, $N \ge 1$ is the sub-threshold slope factor that is expressed by:

$$N = 1 + \frac{C_{\rm OX}}{C_{\rm iS}}.\tag{1.5}$$

In (1.5), $C_{\rm OX}$ is the gate capacitance per unit area and $C_{\rm jS}$ is the equivalent capacitance of the substrate. Referring to (1.4), the drain current grows exponentially with $V_{\rm GS}$ and $-V_{\rm DS}$. Therefore, the current becomes independent of $V_{\rm DS}$ for $V_{\rm DS} > 4V_{\rm T}$ (~100 mV), leading to the simpler drain current relationship shown below:

$$I_{\rm D} \approx I_{\rm S} \exp\left(\frac{V_{\rm GS} - V_{\rm TH}}{NV_{\rm T}}\right),$$
 (1.6)

where, $I_{\rm S} = (W/L)I_0$ is known as the 'specific current'. If a MOS device can still conduct for $V_{\rm GS} < V_{\rm TH}$, then how can we define the threshold voltage appeared in the above expressions? A few definitions have been proposed for the threshold voltage to date, one of which is to extrapolate the weak and strong inversion characteristics on a logarithmic vertical scale, and to define their intercept point as $V_{\rm TH}$.

The exponential dependence of $I_{\rm D}$ upon $V_{\rm GS}$ suggests the usage of subthreshold MOS devices for achieving higher transconductances similar to the bipolar devices. However, since subthreshold conduction appears for large devices biased by low drain current, the speed of the subthreshold devices is mostly compromised in the weak

6 Advanced Analog Integrated Circuits Design

inversion. Increasing the gate-source voltage to higher than the threshold voltage drives the transistor into strong inversion, where the following expression exists for operation at strong-inversion saturation by ignoring the channel length modulation:

$$I_{\rm D} \approx \frac{1}{2} \mu_{\rm n} C_{\rm OX} \left(\frac{W}{L} \right) (V_{\rm GS} - V_{\rm TH})^2 = \frac{1}{2} \mu_{\rm n} C_{\rm OX} \left(\frac{W}{L} \right) V_{\rm OV}^2.$$
 (1.7)

Table 1.1 shows the traditional algebraic expressions used to model the different operating regions of a MOSFET. The small-signal transconductance $(g_{\rm m})$ is defined as the change in the drain current divided by the change in the gate-source voltage $(g_{\rm m} = \partial I_{\rm D}/\partial V_{\rm GS})$ [5]. This parameter is presented in Table 1.1 for different regions.

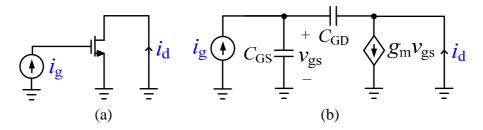
The designer should analyze each region separately, using the specific equation proposed for the corresponding region. The main weakness of the model is that no voltage/current expression can describe the device operation in moderate inversion regime.

Table 1.1 Traditional (Square-Law) Model for Different Regions

Operating Region	Current	Transconductance
Weak Inversion (Triode or Saturation)	$I_{\rm D} = \left(\frac{W}{L}\right) I_0 \exp\left(\frac{V_{\rm GS} - V_{\rm TH}}{NV_{\rm T}}\right)$ $\left[1 - \exp\left(-\frac{V_{\rm DS}}{V_{\rm T}}\right)\right]$	$g_{\mathrm{m}} = \frac{\partial I_{\mathrm{D}}}{\partial V_{\mathrm{GS}}} \approx \frac{I_{\mathrm{D}}}{NV_{\mathrm{T}}}$
Strong Inversion (Saturation)	$I_{\rm D} = \frac{1}{2} \mu_{\rm n} C_{\rm OX} \left(\frac{W}{L} \right)$ $(V_{\rm GS} - V_{\rm TH})^2 (1 + \lambda_{\rm n} V_{\rm DS})$	$g_{\rm m} \approx \sqrt{2\mu_{\rm n}C_{\rm OX}\left(\frac{W}{L}\right) \times I_{\rm D}}$
Strong Inversion (Triode)	$I_{\rm D} = \mu_{\rm n} C_{\rm OX} \left(\frac{W}{L}\right)$ $\left[(V_{\rm GS} - V_{\rm TH}) V_{\rm DS} - \frac{1}{2} V_{\rm DS}^2 \right]$	$g_{\mathrm{m}} \approx \mu_{\mathrm{n}} C_{\mathrm{OX}} \left(\frac{W}{L}\right) V_{\mathrm{DS}}$

1.2.2. Transit Frequency

A very common way to characterize the high-frequency behavior of a MOSFET is to look at the frequency at which the small-signal current gain of a common-source amplifier falls to unity. The measurement of the current gain is presented in Fig. 1.4(a), which can be found by dividing the small-signal drain current $(i_{\rm d})$ to the gate current $(i_{\rm g})$. The transit frequency $(f_{\rm T})$ is defined as the frequency where $i_{\rm d}/i_{\rm g}=1$. It is a key parameter for characterizing the bandwidth of the most analog circuits.


Consider the small-signal equivalent circuit of the schematic of Fig. 1.4(a) in Fig. 1.4(b), where the drain and source terminals are tied together and shorted to ground. The small-signal gate-source voltage $(v_{\rm gs})$ can be related to the gate current as:

$$v_{\rm gs}(s) = \frac{i_{\rm g}(s)}{s(C_{\rm GS} + C_{\rm GD})},$$
 (1.8)

where, C_{GS} and C_{GD} are the gate-source and gate-drain capacitors, respectively. Since $i_d(s) = g_m v_{gs}(s)$, we conclude that:

$$i_{\rm d}(s) \approx i_{\rm g}(s) \frac{g_{\rm m}}{s(C_{\rm GS} + C_{\rm GD})} \Rightarrow \frac{i_{\rm d}(s)}{i_{\rm g}(s)} \approx \frac{g_{\rm m}}{s(C_{\rm GS} + C_{\rm GD})}.$$
 (1.9)

Under the steady-state conditions, we set $s = j\omega$, and f_T can be measured as (1.10):

Fig. 1.4. (a) Main circuit and (b) the small-signal equivalent circuit for evaluating the transit frequency.